Smooth compactness of $f$-minimal hypersurfaces with bounded $f$-index

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Minimal Hypersurfaces with Bounded Index

We prove a structural theorem that provides a precise local picture of how a sequence of closed embedded minimal hypersurfaces with uniformly bounded index (and volume if the ambient dimension is greater than three) in a Riemannian manifold (M, g), 3 ≤ n ≤ 7, can degenerate. Loosely speaking, our results show that embedded minimal hypersurfaces with bounded index behave qualitatively like embed...

متن کامل

F -thresholds of Hypersurfaces

In characteristic zero one can define invariants of singularities using all divisors over the ambient variety. A key result that makes these invariants computable says that they can be determined by the divisors on a resolution of singularities. For example, if a is a sheaf of ideals on a nonsingular variety, then to every nonnegative real number λ one associates the multiplier ideal J (a). The...

متن کامل

Minimal Hypersurfaces with Finite Index

In an article of Cao-Shen-Zhu [C-S-Z], they proved that a complete, immersed, stable minimal hypersurface M of R with n ≥ 3 must have only one end. When n = 2, it was proved independently by do Carmo-Peng [dC-P] and FischerColbrie-Schoen [FC-S] that a complete, immersed, oriented stable minimal surface in R must be a plane. Later Gulliver [G] and Fischer-Colbrie [FC] proved that if a complete, ...

متن کامل

Reformulated F-index of graph operations

The first general Zagreb index is defined as $M_1^lambda(G)=sum_{vin V(G)}d_{G}(v)^lambda$. The case $lambda=3$, is called F-index. Similarly, reformulated first general Zagreb index is defined in terms of edge-drees as $EM_1^lambda(G)=sum_{ein E(G)}d_{G}(e)^lambda$ and the reformulated F-index is $RF(G)=sum_{ein E(G)}d_{G}(e)^3$. In this paper, we compute the reformulated F-index for some grap...

متن کامل

Clean Semiprime f-Rings with Bounded Inversion

An element in a ring is called clean if it may be written as a sum of a unit and idempotent. The ring itself is called clean if every element is clean. Recently, Anderson and Camillo (Anderson, D. D., Camillo, V. (2002). Commutative rings whose elements are a sum of a unit and an idempotent. Comm. Algebra 30(7):3327–3336) has shown that for commutative rings every von-Neumann regular ring as we...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 2017

ISSN: 0002-9939,1088-6826

DOI: 10.1090/proc/13628